Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Radiother Oncol ; 170: 89-94, 2022 05.
Article in English | MEDLINE | ID: mdl-35189156

ABSTRACT

PURPOSE: To update the 2011 ESTRO-EFOMP core curriculum (CC) for education and training of medical physics experts (MPE)s working in radiotherapy (RT), in line with recent EU guidelines, and to provide a framework for European countries to develop their own curriculum. MATERIAL AND METHODS: Since September 2019, 27 European MPEs representing ESTRO, EFOMP and National Societies, with expertise covering all subfields of RT physics, have revised the CC for recent advances in RT. The ESTRO and EFOMP Education Councils, all European National Societies and international stakeholders have been involved in the revision process. RESULTS: A 4-year training period has been proposed, with a total of 240 ECTS (European Credit Transfer and Accumulation System). Training entrance levels have been defined ensuring the necessary physics and mathematics background. The concept of competency-based education has been reinforced by introducing the CanMEDS role framework. The updated CC includes (ablative) stereotactic-, MR-guided- and adaptive RT, particle therapy, advanced automation, complex quantitative data analysis (big data/artificial intelligence), use of biological images, and personalized treatments. Due to the continuously increasing RT complexity, more emphasis has been given to quality management. Clear requirements for a research project ensure a proper preparation of MPE residents for their central role in science and innovation in RT. CONCLUSION: This updated, 3rd edition of the CC provides an MPE training framework for safe and effective practice of modern RT, while acknowledging the significant efforts needed in some countries to reach this level. The CC can contribute to further harmonization of MPE training in Europe.


Subject(s)
Artificial Intelligence , Radiation Oncology , Curriculum , Europe , Health Physics/education , Humans , Radiation Oncology/education
2.
Phys Med ; 84: 10-14, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33799057

ABSTRACT

PURPOSE: The Council Directive 2013/58/EURATOM entered into force in 2014, and its transposition into national legislations became applicable in 2018. The Council Directive 2013/58/EURATOM strengthened the importance of clinical audits, and stated that Member States should ensure dosimetry audit compliance in accordance with national procedures. Therefore, the purpose of this work was to picture the status of the implementation of dosimetry audits in European countries. METHODS: A questionnaire was designed to describe dosimetry audit standards in radiotherapy across European countries. The questionnaire was sent to 33 EFOMP National Member Organizations (NMO). RESULTS: Nineteen NMOs responded to the survey (14 EU members). For 58% of the participating countries national regulations required dosimetry audits in radiotherapy departments. In 37% of the participating countries there were implemented regulations for independent/secondary dose verification, and in 21% of the participating countries similar procedures for dose verification were already implemented although not regulated by law. In 42% of the participating countries there were implemented mechanisms to review updates and advances in the field of radiotherapy. CONCLUSIONS: The transposition and further implementation of the Council Directive 2013/59/EURATOM was scarce, leading to heterogeneities in national policies about dosimetry audits.


Subject(s)
Radiation Oncology , Radiometry , Clinical Audit , Europe , Radiotherapy , Surveys and Questionnaires
3.
Radiother Oncol ; 153: 279-288, 2020 12.
Article in English | MEDLINE | ID: mdl-33096166

ABSTRACT

BACKGROUND AND PURPOSE: Normal tissue complication probability (NTCP) models applied for model-based patient selection to proton therapy (PT) have usually been derived using dose/volume histogram (DVH) parameters from photon-based radiotherapy. This study aimed to derive PT-specific multivariate NTCP models that also accounted for the spatial dose distribution (rectum only) as well as non-dose/volume related factors. MATERIALS AND METHODS: The study included rectum and bladder DVHs, 2D rectal dose maps and relevant patient/treatment characteristics from 1151 prostate cancer cases treated with PT. Prospectively scored Grade 2 late rectal bleeding (CTCAE v3.0, also procedural interventions separately) (n = 156 (15%)) and Grade 3+ GU morbidity (n = 51 (4%)) were entered into a multivariate logistic regression analysis. Model evaluation included assessment of the area under the receiver operating characteristic curve (AUC). RESULTS: Anticoagulant use was a dominant predictor, chosen in four of the six rectum models and in the bladder model. Age was a dominant predictor in all procedural only rectum models while prostate volume, bladder D5% and V75Gy were predictors in the bladder model. The selection frequency of the dose/volume predictors varied widely, where the percentage of the anterior rectum surface receiving >=75 Gy was the most robust. AUC values ranged from 0.58 to 0.70 across all models, with no clear difference between the DVH- and spatial-based models for the rectum. CONCLUSION: Anticoagulant use and age were the most prominent predictors in the NTCP models. V75Gy of the rectal wall and the bladder was a predictor in the DVH-based models of the rectum and bladder respectively.


Subject(s)
Prostatic Neoplasms , Proton Therapy , Radiation Injuries , Radiotherapy, Conformal , Humans , Male , Morbidity , Probability , Prostatic Neoplasms/radiotherapy , Proton Therapy/adverse effects , Radiation Injuries/epidemiology , Radiation Injuries/etiology , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Rectum , Urinary Bladder
6.
Acta Oncol ; 58(10): 1451-1456, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31303090

ABSTRACT

Background: Proton arc therapy may improve physical dose conformity and reduce concerns of elevated linear energy transfer (LET) and relative biological effectiveness (RBE) at the end of the proton range, while offering more degrees of freedom for normal tissue sparing. To explore the potential of proton arc therapy, we studied the effect of increasing the number of beams on physical and biologically equivalent dose conformity in the setting of pediatric brain tumors. Material and methods: A cylindrical phantom (Ø = 150 mm) with central cylindrical targets (Ø = 25 and 30 mm) was planned with increasing number of equiangular coplanar proton beams (from 3 to 36). For four anonymized pediatric brain tumor patients, two 'surrogate' proton arc plans (18 equiangular coplanar or sagittal beams) and a reference plan with 3 non-coplanar beams were constructed. Biologically equivalent doses were calculated using two RBE scenarios: RBE1.1; and RBELET, the physical dose weighted by the LET. For both RBE scenarios, dose gradients were assessed, and doses to cognitive brain structures were reported. Results: Increasing the number of beams resulted in an improved dose gradient and reduced volume exposed to intermediate LET levels, at the expense of increased low-dose and low-LET volumes. Most of the differences between the two RBE scenarios were seen around the prescription dose level, where the isodose volumes increased with the RBELET plans, e.g. up to 63% in the 3-beam plan for the smallest phantom target. Overall, the temporal lobes were better spared with the sagittal proton arc surrogate plans, e.g. a mean dose of 3.9 Gy compared to 6 Gy in the reference 3-beam plan (median value, RBE1.1). Conclusion: Proton arc therapy has the potential to improve dose gradients to better spare cognitive brain structures. However, this is at the expense of increased low-dose/low-LET volumes, with possible implications for secondary cancer risks.


Subject(s)
Brain Neoplasms/radiotherapy , Organ Sparing Treatments/methods , Proton Therapy/methods , Radiation Injuries/prevention & control , Radiotherapy, Intensity-Modulated/methods , Brain/radiation effects , Child , Cognition/radiation effects , Dose-Response Relationship, Radiation , Humans , Linear Energy Transfer , Organ Sparing Treatments/adverse effects , Organs at Risk/radiation effects , Phantoms, Imaging , Proton Therapy/adverse effects , Radiation Injuries/etiology , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/adverse effects
7.
Phys Imaging Radiat Oncol ; 5: 5-8, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33458361

ABSTRACT

Functional imaging techniques provide radiobiological information that can be included into tumour control probability (TCP) models to enable individualized outcome predictions in radiotherapy. However, functional imaging and the derived radiobiological information are influenced by uncertainties, translating into variations in individual TCP predictions. In this study we applied a previously developed analytical tool to quantify dose and TCP uncertainty bands when initial cell density is estimated from MRI-based apparent diffusion coefficient maps of eleven patients. TCP uncertainty bands of 16% were observed at patient level, while dose variations bands up to 8 Gy were found at voxel level for an iso-TCP approach.

8.
Phys Imaging Radiat Oncol ; 6: 101-105, 2018 Apr.
Article in English | MEDLINE | ID: mdl-33458397

ABSTRACT

BACKGROUND AND PURPOSE: Focal tumour boosting is currently explored in radiotherapy of prostate cancer to increase tumour control. In this study we applied dose response models for both tumour control and normal tissue complications to explore the benefit of proton therapy (PT) combined with focal tumour boosting, also when accounting for inter-fractional motion. MATERIALS AND METHODS: CT scans of seven patients fused with MRI-based index volumes were used. Two volumetric modulated arc therapy (VMAT) plans were created for each patient; one with conventional dose (77 Gy) to the entire prostate, and one with an additional integrated boost (total dose of 95 Gy) to the index lesion. Two corresponding intensity modulated PT (IMPT) plans were created using two lateral opposing spot scanning beams. All plans were evaluated using an MRI-based tumour control probability (TCP) model and normal tissue complication probability (NTCP) models for the rectum and bladder. Plan robustness was evaluated using dose re-calculations on repeat cone-beam CTs. RESULTS: Across all plans, median TCP increased from 86% (range: 59-98%) without boost to 97% (range: 96-99%) with boost. IMPT plans had lower rectum NTCPs (e.g. 3% vs. 4% for boost plans) but higher bladder NTCPs (20% vs. 18% for boost plans), yet only the bladder NTCPs remained different in the cone beam CT-based re-calculations. CONCLUSIONS: Focal tumour boosting can be delivered with either VMAT or protons, and increases the predicted TCP. The small benefit of IMPT when assessing the planned dose distributions was lost when accounting for inter-fractional motion.

9.
Phys Imaging Radiat Oncol ; 7: 65-69, 2018 Jul.
Article in English | MEDLINE | ID: mdl-33458407

ABSTRACT

BACKGROUND AND PURPOSE: The risk of genitourinary (GU) toxicity is dose-limiting in radiotherapy (RT) for prostate cancer. This study investigated whether motion-inclusive spatial dose/volume metrics explain the GU toxicity manifesting after high-precision RT for prostate cancer. MATERIAL AND METHODS: A matched case-control was performed within a cohort of 258 prostate cancer patients treated with daily cone-beam CT (CBCT)-guided RT (prescription doses of 77.4-81.0 Gy). Twenty-seven patients (10.5%) presented late RTOG GU ≥ Grade 2 toxicity and those without symptoms of toxicity prior treatment (N = 7) were selected as cases. Each case was matched with three controls based on pre-treatment GU symptoms, age, Gleason score, follow-up time, and hormone therapy. Thirteen CBCTs per patient were rigidly registered to the planning CT using the recorded treatment shifts, and the bladder was manually contoured on each CBCT. Planned and actually delivered dose/volume metrics (the latter averaged across the CBCTs) were extracted from the bladder and its subsectors, and compared between cases and controls (two-way ANOVA test). RESULTS: There were no significant differences between planned and delivered dose/volume metrics; also, there were no significant differences between cases and controls at any dose level, neither for planned nor delivered doses. The cases tended to have larger bladder volumes during treatment than controls (221 ±â€¯71 cm3 vs 166 ±â€¯73 cm3; p = 0.09). CONCLUSIONS: High-precision RT for prostate cancer eliminates differences between planned and delivered dose distributions. Neither planned nor delivered bladder dose/volume metrics were associated to the remaining low risk of developing GU toxicity after high-precision radiotherapy for prostate cancer.

10.
Acta Oncol ; 56(11): 1507-1513, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28885095

ABSTRACT

BACKGROUND: Gastro-intestinal (GI) toxicity after radiotherapy (RT) for prostate cancer reduces patient's quality of life. In this study, we explored associations between spatial rectal dose/volume metrics and patient-reported GI symptoms after RT for localized prostate cancer, and compared these with those of dose-surface/volume histogram (DSH/DVH) metrics. MATERIAL AND METHODS: Dose distributions and six GI symptoms (defecation urgency/emptying difficulties/fecal leakage, ≥Grade 2, median follow-up: 3.6 y) were extracted for 200 patients treated with image-guided RT in 2005-2007. Three hundred and nine metrics assessed from 2D rectal dose maps or DSHs/DVHs were subject to 50-times iterated five-fold cross-validated univariate and multivariate logistic regression analysis (UVA, MVA). Performance of the most frequently selected MVA models was evaluated by the area under the receiving-operating characteristics curve (AUC). RESULTS: The AUC increased for dose-map compared to DSH/DVH-based models (mean SD: 0.64 ± 0.03 vs. 0.61 ± 0.01), and significant relations were found for six versus four symptoms. Defecation urgency and faecal leakage were explained by high doses at the central/upper and central areas, respectively; while emptying difficulties were explained by longitudinal extensions of intermediate doses. CONCLUSIONS: Predictability of patient-reported GI toxicity increased using spatial metrics compared to DSH/DVH metrics. Novel associations were particularly identified for emptying difficulties using both approaches in which intermediate doses were emphasized.


Subject(s)
Defecation , Fecal Incontinence/diagnosis , Gastrointestinal Diseases/diagnosis , Prostatic Neoplasms/radiotherapy , Radiation Injuries/diagnosis , Radiotherapy, Conformal/adverse effects , Rectum/pathology , Dose-Response Relationship, Radiation , Fecal Incontinence/etiology , Gastrointestinal Diseases/etiology , Humans , Male , Radiation Injuries/etiology , Rectum/radiation effects
11.
Acta Oncol ; 56(6): 839-845, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28464733

ABSTRACT

BACKGROUND: Proton therapy (PT) may have a normal tissue sparing potential when co-irradiating pelvic lymph nodes in patients with locally advanced prostate cancer, but may also be more sensitive towards organ motion in the pelvis. Building upon a previous study identifying motion-robust proton beam angles for pelvic irradiation, we aimed to evaluate the influence of organ motion for PT using biological models, and to compare this with contemporary photon-based RT. MATERIAL AND METHODS: Eight locally advanced prostate cancer patients with a planning CT (pCT) and 8-9 repeated CT scans (rCTs) were included. Two PT plans were created, one using two lateral opposed beams at gantry angles of 90°/270° and the other using two lateral oblique beams at 35°/325°; these were compared with volumetric modulated arc therapy (VMAT) plans. All plans were optimised on the pCT and subsequently re-calculated on each rCT (following rigid alignment on the prostate). Dose distributions in organs at risk (OARs) were evaluated using mean dose, generalized equivalent uniform doses (gEUDs) and normal tissue complication probabilities (NTCPs), while mean dose and the volume receiving 98% of the dose (V98%) were used for the targets. RESULTS: PT significantly reduced the mean dose to the OARs and a correlation was seen in the pCTs between the prostate PTV overlapping the relevant OAR and OAR NTCPs, as was also the case for the VMAT plans. The best prostate target coverage across the rCTs for the IMPT plans were seen with two lateral opposed beams, although a poor coverage of the lymph node target was apparent based on V98% compared to the VMAT plans. CONCLUSIONS: PT reduced the mean dose to normal tissues in the irradiation of pelvic lymph nodes and a strong association between the volume overlap and NTCPs in the pCTs were found.


Subject(s)
Models, Biological , Organ Motion/radiation effects , Organs at Risk/radiation effects , Photons , Prostatic Neoplasms/radiotherapy , Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Humans , Male , Pelvis/radiation effects , Radiotherapy Dosage , Rectum/radiation effects
12.
Acta Oncol ; 56(6): 846-852, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28464734

ABSTRACT

BACKGROUND: Proton therapy dose distributions are sensitive to range variations, e.g. arising from inter-fraction organ motion. The aim of this study was to evaluate the inter-fraction motion robustness of proton beams from different beam angles in irradiation of pelvic lymph nodes (LNs). MATERIAL AND METHODS: Planning CT (pCT) and multiple repeat CT (rCT) scans of 18 prostate cancer patients were used. Considering left and right LNs separately, the average water equivalent path length (WEPL) over all ray paths in the beams eye view of the LNs were calculated for all gantry/couch angle combinations across all rCTs versus the corresponding pCT. Single beam proton plans were optimized on the pCT for all gantry angles (0° couch) and were re-calculated on all rCTs for each respective patient. WEPL and dose parameters were extracted and a statistical clustering analysis performed to identify patient sub-populations in terms of patterns in which angles were robust. RESULTS: The WEPL analysis showed a general pattern of least variation for 0° couch beam angles where three minima were found across gantry angles for the left LNs and two for the right LNs. The clustering analysis identified three patient sub-groups for the left LNs and two groups for the right LNs. The dose calculations showed similar results as the WEPL variation, e.g. for the left LNs angles around 25°-35°, 100°-110°, and 160°-170° were consistently preferable for both target and organs at risk. CONCLUSIONS: Sub-populations of patients with similar patterns of WEPL variations across beam angles were identified. The most robust angles found for WEPL variations were also confirmed by the dose/volume analysis.


Subject(s)
Lymph Nodes/radiation effects , Movement/radiation effects , Pelvic Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Cohort Studies , Humans , Image Processing, Computer-Assisted/methods , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Male , Organs at Risk/radiation effects , Pelvic Neoplasms/diagnostic imaging , Pelvic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed/methods
13.
Acta Oncol ; 56(6): 884-890, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28401808

ABSTRACT

BACKGROUND: Inter-fractional variation in urinary bladder volumes during the course of radiotherapy (RT) for prostate cancer causes deviations between planned and delivered doses. This study compared planned versus daily cone-beam CT (CBCT)-based spatial bladder dose distributions, for prostate cancer patients receiving local prostate treatment (local treatment) versus prostate including pelvic lymph node irradiation (pelvic treatment). MATERIAL AND METHODS: Twenty-seven patients (N = 15 local treatment; N = 12 pelvic treatment) were treated using daily image-guided RT (1.8 Gy@43-45 fx), adhering to a full bladder/empty rectum protocol. For each patient, 9-10 CBCTs were registered to the planning CT, using the clinically applied translations. The urinary bladder was manually segmented on each CBCT, 3 mm inner shells were generated, and semi and quadrant sectors were created using axial/coronal cuts. Planned and delivered DVH metrics were compared across patients and between the two groups of treatment (t-test, p < .05; Holm-Bonferroni correction). Associations between bladder volume variations and the dose-volume histograms (DVH) of the bladder and its sectors were evaluated (Spearman's rank correlation coefficient, rs). RESULTS: Bladder volumes varied considerably during RT (coefficient of variation: 16-58%). The population-averaged planned and delivered DVH metrics were not significantly different at any dose level. Larger treatment bladder volumes resulted in increased absolute volume of the posterior/inferior bladder sector receiving intermediate-high doses, in both groups. The superior bladder sector received less dose with larger bladder volumes for local treatments (rs ± SD: -0.47 ± 0.32), but larger doses for pelvic treatments (rs ± SD: 0.74 ± 0.24). CONCLUSIONS: Substantial bladder volume changes during the treatment course occurred even though patients were treated under a full bladder/daily image-guided protocol. Larger bladder volumes resulted in less bladder wall spared at the posterior-inferior sector, regardless the treatment received. Contrary, larger bladder volumes meant larger delivered doses to the superior bladder sector for pelvic RT but smaller doses for local treatments.


Subject(s)
Pelvis/pathology , Prostate/pathology , Prostatic Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Rectum/pathology , Urinary Bladder/pathology , Cone-Beam Computed Tomography/methods , Humans , Image Processing, Computer-Assisted/methods , Male , Organs at Risk/diagnostic imaging , Organs at Risk/pathology , Organs at Risk/radiation effects , Pelvis/diagnostic imaging , Pelvis/radiation effects , Prostate/diagnostic imaging , Prostate/radiation effects , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Rectum/diagnostic imaging , Rectum/radiation effects , Urinary Bladder/diagnostic imaging , Urinary Bladder/radiation effects
14.
Radiother Oncol ; 119(1): 111-6, 2016 04.
Article in English | MEDLINE | ID: mdl-26987473

ABSTRACT

BACKGROUND AND PURPOSE: Standard tumour control probability (TCP) models assume uniform tumour cell density across the tumour. The aim of this study was to develop an individualised TCP model by including index-tumour regions extracted form multi-parametric magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps-based cell density distributions. MATERIALS AND METHODS: ADC maps in a series of 20 prostate cancer patients were applied to estimate the initial number of cells within each voxel, using three different approaches for the relation between ADC values and cell density: a linear, a binary and a sigmoid relation. All TCP models were based on linear-quadratic cell survival curves assuming α/ß=1.93Gy (consistent with a recent meta-analysis) and α set to obtain a 70% of TCP when 77Gy was delivered to the entire prostate in 35 fractions (α=0.18Gy(-1)). RESULTS: Overall, TCP curves based on ADC maps showed larger differences between individuals than those assuming uniform cell densities. The range of the dose required to reach 50% TCP across the patient cohort was 20.1Gy, 18.7Gy and 13.2Gy using an MRI-based voxel density (linear, binary and sigmoid approach, respectively), compared to 4.1Gy using a constant density. CONCLUSIONS: Inclusion of tumour-index information together with ADC maps-based cell density increases inter-patient tumour response differentiation for use in prostate cancer RT, resulting in TCP curves with a larger range in D50% across the cohort compared with those based on uniform cell densities.


Subject(s)
Prostatic Neoplasms/radiotherapy , Cell Count , Humans , Magnetic Resonance Imaging , Male , Probability , Prostate/pathology , Prostatic Neoplasms/pathology
15.
Acta Oncol ; 54(9): 1643-50, 2015.
Article in English | MEDLINE | ID: mdl-26203931

ABSTRACT

BACKGROUND: The benefit of proton therapy may be jeopardized by dose deterioration caused by water equivalent path length (WEPL) variations. In this study we introduced a method to evaluate robustness of proton therapy with respect to inter-fractional motion and applied it to irradiation of the pelvic lymph nodes (LNs) from different beam angles. Patient- versus population-specific patterns in dose deterioration were explored. MATERIAL AND METHODS: Patient data sets consisting of a planning computed tomography (pCT) as well as multiple repeat CT (rCT) scans for three patients were used, with target volumes and organs at risk (ORs) outlined in all scans. Single beam spot scanning proton plans were optimized for the left and right LN targets separately, across all possible beam angle configurations (5° angle intervals). Isotropic margins of 0, 3, 5 and 7 mm from the clinical target volume (CTV) to the planning target volume (PTV) were investigated. The optimized fluence maps for the pCT for each beam were applied onto all rCTs and the dose distributions were re-calculated. WEPL variation for each beam angle was computed by averaging over beams eye view WEPL distributions. RESULTS: Similarity in deterioration patterns were found for the investigated patients, with beam angles delivering less dose to rectum, bladder and overall normal tissue identified around 40° and around 150°-160° for the left LNs, and corresponding angles for the right LNs. These angles were also associated with low values of WEPL variation. CONCLUSION: We have established and explored a method to quantify the robustness towards inter-fractional motion of single beam proton plans treating the pelvic LNs from different beam configurations and with different CTV to PTV margins. For the patients investigated we were able to identify beam orientations that were robust to dose deterioration in the target and ORs.


Subject(s)
Movement , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Humans , Lymphatic Metastasis , Male , Motion , Organs at Risk , Pelvis , Radiation Dosage , Radiotherapy, Intensity-Modulated/methods , Rectum , Urinary Bladder
16.
Acta Oncol ; 54(9): 1335-42, 2015.
Article in English | MEDLINE | ID: mdl-26198656

ABSTRACT

BACKGROUND: Gastrointestinal morbidity after radiotherapy (RT) for prostate cancer may be related to the biomechanical properties of the rectum. In this study we present a magnetic resonance imaging (MRI)-based method to quantitate the thickness and elasticity of the rectal wall in prostate cancer patients treated with RT. MATERIAL AND METHODS: Four patients previously treated with RT for prostate cancer underwent an MRI session with stepwise rectal bag deflation (from a maximum tolerable volume to 0 ml, in 50 ml steps), with a probe inserted inside the bag to monitor the internal rectal pressure. MRIs were acquired using Dixon sequences (4 mm axial slice thickness) at each deflation step. Rectal walls were defined from the recto-sigmoid junction to 3 cm above the anal canal as the space between the inner and outer wall surfaces. The wall thickness was determined and biomechanical properties (strain and stress) were calculated from the pressure measurements and the MRI-segmented rectal walls. RESULTS: The integral rectal pressure varied for the maximum tolerable volume (range 150-250 ml) across patients and ranged from 1.3 to 4.0 kPa (SD = 1.2 kPa). Wall thickness was found to vary between patients and also across different rectum segments, with a mean (SD) thickness for the different segments at the 50 ml distension volume of 1.8-4.0 (0.6) mm. Stress showed larger variation than strain, with mean (SD) values for the different segments ranging between 1.5 and 7.0 (1.5) kPa. CONCLUSION: We have developed a method to quantify biomechanical properties of the rectal wall. The resulting rectal wall thickness, strain and stress differed between patients, as well as across different rectal wall sections. These findings could provide guidance in future predictive outcome modelling in order to better understand the rectal dose-volume response relationship.


Subject(s)
Magnetic Resonance Imaging/methods , Prostatic Neoplasms/radiotherapy , Radiation Injuries/physiopathology , Rectum/physiopathology , Rectum/radiation effects , Biomechanical Phenomena , Humans , Male
17.
Acta Oncol ; 53(8): 1058-63, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24975371

ABSTRACT

BACKGROUND: Proton therapy offers the potential for sparing the normal tissue surrounding the target. However, due to well-defined proton ranges around the Bragg peak, dose deposition is more sensitive to changes in the water equivalent path length (WEPL) than with photons. In this study, we assess WEPL variations caused by breathing-induced motion for all possible beam angles in a series of lung cancer patients. By studying the association between measures for WEPL variation and breathing-induced target dose degradation we aimed to develop and explore a tool to identify beam angles that are robust to patient-specific patterns of intra-fractional motion. MATERIAL AND METHODS: Using four-dimensional computed tomography (4DCT) images of three lung cancer patients we evaluated the impact of the WEPL changes on target dose coverage for a series of coplanar single-beam plans. The plans were optimised for the internal target volume (ITV) at the maximum intensity projection (MIP) CT for every 3° gantry interval. The plans were transferred to the ten 4DCT phases and the average reduction in ITV V95 over the ten phases, relative to the original MIP CT calculation, was quantified. The target dose reduction was associated with the mean difference between the WEPL and the phase-averaged WEPL computed for all beam rays across all possible gantry-couch angle combinations. RESULTS: The gantry-couch angle maps showed areas of both high and low WEPL variation, with overall quite similar patterns yet with individual differences reflecting differences in tumour position and breathing-induced motion. The coplanar plans showed a strong association between WEPL changes and ITV V95 reduction, with a correlation coefficient ranging between 0.92 and 0.98 for the three patients (p < 0.01). CONCLUSION: We have presented a 4DCT-based method to quantify WEPL changes during the breathing cycle. The method identified proton field gantry-couch angle combinations that were either sensitive or robust to WEPL changes. WEPL variations along the beam path were associated with target under-dosage.


Subject(s)
Four-Dimensional Computed Tomography , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Movement , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Respiration , Dose Fractionation, Radiation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...